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Executive Summary

This paper proposes a multi-objective optimization model to locate charging stations for shared au-
tonomous electric vehicles (SAEV) with vehicle-to-grid (V2G) operations. Mobility requirements, grid
restrictions, and solar power density are included in the model. The model is applied to the Brussels road
and distribution grid network to determine the optimal charging station locations. The results of this
research show that considering the grid restrictions leads to a geographically more distributed allocation
of charging stations. This coincides with a lower mean coverage of mobility demand. Next, the model is
solved for different levels of importance for both the mobility part and the solar density part. A trade-off
between both parts must be made by adequately choosing a weight to determine the importance for both
parts. Varying this weight has an effect on the coverage of mobility demand and the mean solar density.
Based on the analysis in this paper, an optimal trade-off is determined.
Keywords: optimization, charging, infrastructure, V2G (vehicle-to-grid), mobility system

1 Introduction
Shared autonomous electric vehicles (SAEVs) are a promising solution to several challenges facing
the transportation industry, including alleviating traffic congestion and reducing greenhouse gas (GHG)
emissions. The former is a result of the fact that SAEVs are designed to operate without human drivers
and can be shared among multiple passengers, reducing the number of vehicles on the road [1, 2]. One
SAEV can replace 3 to 13 conventional vehicles, depending on several factors such as vehicle range,
level of charging, and population density. The latter is a result of the combination of electrification, ride-
sharing, and autonomy. Research found through a complete Life Cycle Assessment that electric vehicles
(EV) have the lowest CO2 emissions amongst internal combustion engine vehicles (ICEV) and its alter-
natives [3]. Ride-sharing reduces the total vehicle kilometres travelled (VKT) [4]. This, in combination
with the SAEV’s smaller fleet and the energy efficient driving style of autonomous vehicles (AV) [5],
leads to SAEVs reducing GHG emissions even further.

One of the significant advantages of SAEVs, besides reducing GHG emissions, is their potential to facil-
itate vehicle-to-grid (V2G) charging, a technology that allows electric vehicles to provide energy back to
the grid when not in use. With V2G charging, SAEVs can act as mobile energy storage units, helping to
balance the grid and increase the reliability of renewable energy sources (RES) such as wind and solar
power [6].
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Locating charging points for a SAEV fleet participating in V2G services is a great challenge. The in-
frastructure requirements associated with implementing these technologies, are threefold. Firstly, the
allocation of charging infrastructure for SAEVs has an influence on the efficient routing of the fleet. We
call this the mobility component. Secondly, the grid component implies that charging points must be
integrated in the grid in locations where the grid is strong enough, since poor allocation could lead to
grid problems such as voltage instability and increased power losses [7]. Thirdly, V2G can serve as a
means to support the distribution grid in avoiding congestion, overloading, and assist in local balancing.
These are V2G applications with a local component, which is why this must be taken into account in the
location model. In previous research, elements were defined that are needed to be brought together in one
location model to satisfy the three components of charging infrastructure requirements [6]. In this paper,
we propose a location model for charging stations (CS) that incorporates these components. The rest of
this paper is organized as follows. Section 2 refers to related work. The methodology and materials are
presented in Section 3. In Section 4 the results are discussed, and Section 5 concludes the paper.

2 Related work
In our previous research [6, p.15] we defined six elements that need to be present in a location model for
the charging infrastructure of SAEVs with V2G operations. These elements are the following: “Avoid
placing too many CSs; Take restrictions on the power grid into consideration; Satisfy charging and
mobility demand; Higher integration of renewable energy; Impose limits on the SOC to slow down
battery degradation; Bring services to the grid.” In this paper, we propose a location model in which we
include the first four elements. The following sections describe related work for each element.

2.1 Number of charging points
To avoid placing too many CSs (mainly to limit the cost), often a maximum number of chargers is
imposed [8, 9, 10]. However, the question remains what this number should be, since battery range and
charging power both affect the required number of charging stations for a certain fleet size. Based on
previous research [8, 11, 12, 13] we created Table 1, which shows the ratio of SAEV fleet to number of
charging points.

Number of SAEVs per charging point

Battery capacity/range Charging power (kW) Reference
(kWh) (miles) (km) ±5 ±7 ±11 22 40 50 80

12.5 50 80 6.5 [13]
17.5 70 112 3.2 [13]
20 80 128 1.9 2.4 32.5 [13, 11]

22.5 90 145 4.3 [13]
30 124 200 1.9 [12]
40 160 290 2.5-3.1 13.3 [11, 8]
50 200 320 2.5 2.8 [11, 8]

Table 1: The number of SAEVs per charging point for different battery ranges and charging powers. Underlined in
the column ‘Battery capacity/range’ are the units that were used in the references. To complete the table, following
ratio’s were used: 1 kWh for 4 miles battery range or 0.156kWh/km; 1.6 km for 1 mile [14, 15].

2.2 Restrictions on the power grid
To take restrictions on the grid into account, many researchers minimize power losses and limit voltage
deviation [16, 17, 18]. Applying this to larger networks and/or practical cases requires detailed informa-
tion of the distribution network, which is not always available [19]. Therefore, research usually uses the
IEEE test feeders [20] as benchmark for power flow analyses. In order to introduce power availability
on the distribution grid into this optimization, we opt to follow Distribution System Operator (DSO)
guidelines to limit the roll-out of charging infrastructure to connection points on the three-phase 400V
(3x400V+N) power supply and not the obsolete three-phase 230 V (3x230V), which is gradually being
replaced. Connecting the charging infrastructure to the 400V voltage system allows for higher power
availability for the EV drivers due to the three-phases (as opposed to a single phase in the conventional
230V voltage system, where a neutral conductor is absent) and reduces voltage unbalance, thermal stress
and losses within the distribution grid.
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2.3 Satisfy mobility demand
In order to account for mobility requirements, data on travel behaviour and mobility demand is needed.
Travel data can be obtained by Origin-destination (OD) pairs. OD pairs represent the occurrence of trips
and are therefore frequently used in mobility focused optimization problems. Examples of open data that
can be used are StreetLight Data [21], National Household Travel Survey (NHTS) data [22], and Mobile
Phone Trajectory data [12]. These data sources provide information about travel behaviour and can be
used as direct input for optimization models, or as input for simulations.

It would be convenient for drivers to charge in the proximity of where they will start or just finished a
trip. Therefore, it is a common assumption that origins and destinations of trips are suitable locations
for charging. From OD pairs, the number of pick-up and drop-off (PUDO) points can be counted per
area. These counts can be used in the location model. A possible strategy, used in [8, 23], is to maximize
the covered PUDO points by placing CSs in the center of demand clusters. This problem formulation is
called the maximal coverage location problem (MCLP). Another possibility, called the P-median model,
is to minimize the distance between charging demand (often represented by the count of PUDO points)
and CSs [8, 24, 9]. Vosooghi et al. compared the MCLP to the P-median model and found that the
P-median model outperformed the MCLP in terms of in-vehicle person kilometers traveled. Gacias et
al. [9] compared the P-median model to the demand-based model. In this model covered demand is
maximized, while also limiting the distance to the nearest CS for every area. They concluded that the
demand-based model outperformed the P-median model in terms of satisfied customers, taxi’s operating
time, and waiting time for an available charging station.

2.4 Higher integration of renewable energy sources
One of the advantages of V2G is their ability to increase the reliability of RES and thereby facilitate
a higher integration of RES. Researchers have been looking into optimally locating RES and CSs si-
multaneously [25], locating solar powered charging stations [26], or locating CSs in a solar powered
micro-grid [27]. They consider the solar power generation profile over time. However Sultan et al. [28]
predict solar excess power generation spatially. They locate the CSs based on this spatial distribution
such that the vehicles can absorb mid-day solar overgeneration.

3 Materials and methodology
Both the distribution and road transportation network are tied in the SAEV charging system. Both the
network power load and the served charging demand for SAEVs can be impacted by locations of CSs.
Therefore, we propose an optimization model which will maximize covered SAEV pick-up and drop-off
points, maximize the solar power density, and simultaneously consider the availability of the distribution
grid to install fast chargers.

Figure 1: Conceptual framework

Li. et al [29] have simulated the substitution of private car trips in Brussels by a fleet of shared au-
tonomous vehicles (SAV) under 10% of current demand. They only considered trips that start and end
within Brussels. This means that trips starting from outside of Brussels are not accounted for. For this
they found that a fleet of 1000 SAVs would suffice to provide a mobility service with a waiting time of
less than 5 minutes. They have a large range and negligible refilling time. The trips from their simulation
served as input data for this research.

However we must take into account that the simulation was accounted for non-electric SAVs. Since in
this paper we will locate charging infrastructure for SAEVs, which are electric SAVs, we need to make a
few notations. Firstly, the range of the SAEVs affects the needed number of chargers [1]. Secondly, the
charge power affects the fleet size. To maintain the validity of the 1000 non-electric SAVs simulation,
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we must account for these two effects. Therefore, we assume a battery range of 300km and a charging
rate of 50kW.

We start by dividing Brussels into hexagons with an edge length of 174 meters, thereby creating a hexag-
onal grid. The hexagonal shape ensures that the distance from the centre to centre of each neighbouring
hexagonal is equal. This type of grid has been proven to be more suitable in various types of research
[30, 31].

3.1 Road transportation network
For the road transportation part, we suggest a variation of the MCLP used in [8, 23]. Our contribution
to their model is that we will also decide on the numbers of charging points per chosen location, and not
only on the locations itself. From the OD pairs, we count the number of PUDO locations of SAEVs per
hexagon. PUDO locations are the locations where SAEVs finish one ride before picking up a new one.
To avoid unnecessary detours, it would be convenient from a mobility point of view to install charging
points at these locations.

To each hexagon i ∈ H we assign an integer value xi equal to the number of charging points located in
this hexagon. The goal is to maximize the total covered PUDO points. We call a PUDO point ‘covered’
if a charging point is assigned to it. Despite the fact that in reality not every PUDO point would gen-
erate an actual charging demand, there is a proportional relation between number of PUDO points and
charging demand. Therefore, a higher number of PUDO points in a certain hexagon would generate a
higher charging demand and consequently more charging points are needed in this hexagon. Therefore,
maximizing the total covered PUDO points mimics maximizing covered charging demand.

Vosooghi et al. [8] consider an area to be covered as soon as one CS is installed in this area. That means
that according to their model, even in an area with very high charging demand, one CS would suffice
to cover the complete area. However, when two charging requests occur simultaneously in an area
with only one charging point, it is impossible to serve both charging requests. Hence, we believe that
their assumption is not realistic. Therefore, we propose a coverage rate ri relative to the ratio between
the number of charging points installed x and the number of PUDO points c in this and neighbouring
hexagons, as formulated in Equation (1). This formula is adapted from the one used in [8, 23], according
to the argumentation above.

ri =
xi

ci + ϵ
+

1

2
·

∑
j∈ Ni

xj
ci + ϵ

(1)

neighbouring hexagons of ith hexagon

number of charging points in ith hexagon

number of PUDO points in ith hexagon

In the calculation for the coverage rate, charging points installed in the considered hexagon are counted
fully, and charging points installed in neighbouring hexagons are counted only half. To clarify, we
provide an example depicted in Figure 2. The addition of the small value ϵ in the denominator of Equation
(1) is to avoid dividing by zero in case no PUDO points are counted in a certain hexagon. The coverage
rate can be interpreted as the extent to which charging points are linked to PUDO points. It represents a
percentage of possible charging demand that will be covered. It would be desirable that hexagons with a
high PUDO count, and thus a high possible charging demand, are equipped with more CSs and thereby
will have a high coverage rate. However, the higher the PUDO count in a certain hexagon, the higher
the required number of CSs to reach a certain coverage rate. As a result, installing CSs in hexagons with
low PUDO counts typically leads to higher coverage rates. For this reason, we must keep in mind that
coverage rate is not always a reliable parameter to assess the strength of a solution for CS allocation.

Figure 2: Illustration for the calculation of the coverage rate.
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To retrieve a more reliable absolute number to represent the coverage in a hexagon, we can multiply its
coverage rate with its number of PUDO points. The result of this multiplication is called the number of
covered PUDOs. However, it should not be possible that a hexagon has more covered PUDOs than the
number of PUDO points in this hexagon. Therefore, in the calculation of covered PUDOs, the coverage
rate should be limited to maximum 1. For this reason, we define a new variable weight w. The weight of
a hexagon wi is equal to its coverage rate, but is limited to 1. This weight will be used in the objective
function in our location model to calculate the covered PUDO points. As mentioned earlier, the goal is
to maximize the total covered PUDO points. Finally a maximal number of CSs is defined as B. This
number must be fixed beforehand and is based on prior work. The following maximal covering location
problem is formed:

maximize
xi

∑
i∈ H

ci wi (2)

subject to
∑
i∈H

xi < B (3)

wi ≤ min
(
1, xi

ci+ϵ +
1
2 ·

∑
j∈Ni

xj

ci+ϵ

)
∀i ∈ H (4)

xi is integer ∀i ∈ H (5)

set of hexagons

weight of ith hexagon

maximal number of chargers

coverage rate of ith hexagon

The decision variable xi is the number of charging points to be installed in hexagon i. The objective
function (2) maximizes the total number of captured PUDO points. Constraint (9) imposes a maximum
number of CSs, and constraint (10) ensures that the weight of each hexagon cannot be greater than 1.

3.2 Distribution network
Next to the road transportation network, we also want to take the grid into account. As discussed in
subsection 2.2, charging at 400 volt cabines facilitates some advantages, such as faster charging and
discharging rates, enabling more efficient and effective V2G operations. Therefore, we limit the potential
locations for CSs to there where a 400V cabine is located. In a conversation with the DSO of Brussels,
it was indicated that a maximum load capacity of 100kW is possible per cabin. Because we will work
with fast chargers that go up to 50kW, we limit ourselves to 2 charging points per cabine, which leads to
the following constraint:

xi ≤ 2 yi ∀i ∈ H (6)
number of 400V cabines in ith hexagon

3.3 Power generation density
To maximize the potential of RES integration in the grid, we aim to install CSs at locations with an
excess of solar generation. Due to lack of power excess data and power load data, we estimate the excess
according to the power generation density. We have access to data that shows the solar power density per
municipality in Brussels [32], as shown in Figure 3c. We assume that a higher solar power generation per
area results in a higher probability of a solar power excess. For this reason, we want our model to place
CSs in areas with a high solar power density. To reach this, we maximize the ‘covered’ power density
with objective function 7.

maximize
xi

∑
i∈H

xi pi (7)
solar power density in ith hexagon

3.4 Final location model
In our final model, we combine the mobility objective function and the power density objective function
by constructing one weighted objective function. Herefore, we first normalize the PUDO counts (ĉ) and
solar power density (p̂), such that both vectors are equally considered. The mobility objective function is
assigned weight wm, and the power density objective function is assigned weight wp. Also the mobility
constraints and the grid constraint are added to model. Our final model is presented below.
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maximize
xi

wm

∑
i∈H

ĉiwi +
∑
i∈H

xip̂i (8)

subject to
∑
i∈H

xi < B (9)

wi ≤ min

1,
xi

ci + 0.01
+

1

2
·
∑
j∈Ni

xj
ci + 0.01

 ∀i ∈ H (10)

xi ≤ 2yi ∀i ∈ H (11)

xi is integer ∀i ∈ H (12)

4 Results
We first divided Brussels into 1783 hexagons with an average edge length of 174m. After that, it was
possible to visualize our data on the hexagonal grid.

We used three types of input data: 14 975 PUDO locations, later converted to PUDO counts per hexagon,
respectively visualized in Figures 3a and 3b; the locations of the 400V cabines in Brussels; and the solar
power density per municipality, visualized in Figure 3c.

(a) PUDO points from all rides
that start and end empty. (b) PUDO counts per hexagon. (c) Solar power density (kW).

Figure 3: Input data visualization.

Currently, the mean range of EVs is around 300 km [33]. In this paper, we aim to install fast-chargers
which can go up to 50kW. As shown in Table 1, previous research found a wide range for the ratio of
SAEV fleet to number of charging points. It is therefore not easy to estimate the number of we would
need in Brussels for a fleet of 1000 SAEVs. However, we see that numbers around 2.5 occur several times
for higher ranges and charging powers, apart from some outlying numbers. Therefore, we conclude that
this ratio, which would match with 400 charging points for a fleet of 1000 SAEVs, is a good starting
point for our case study.

4.1 Add grid constraint
Figure 4 shows the effect of limiting the potential CS locations to there where a 400V cabine is installed.
We see that charging points are forced to be more dispersed, due to the limit of 2 charging points per cab-
ine. Figure 5 shows the effect of adding the grid constraint, and thereby moving from a situation where
CSs are located very densely in high demand hexagons to a geographically slightly more dispersed dis-
tribution of CSs. As mobility is still the only component in the objective function, CSs are still located
in hexagons with high PUDO counts. However, due to the grid constraint less CSs can be installed per
hexagon, lowering the mean1 coverage rate from 58% to 37%, as shown in Figure 5a. The higher disper-
sion means that more hexagons will be equipped with at least one CS and thereby retrieve an non-zero
coverage rate. From now on we call hexagons with a non-zero coverage rate ‘equipped hexagons’. The

1This mean is calculated based only on equipped hexagons.
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(a) CSs based on mobility. (b) CSs based on mobility and 400V cabine locations.

Figure 4: Optimal solution for charging points in Brussels (a) with only PUDOs taken into account, and (b) with
PUDOs taken into account together with the locations of 400V cabines.

number of equipped hexagons increased from 192 to 345. As a result, despite the lower mean coverage
rate, the total coverage (the sum over all coverage rates) increased. However, although the total coverage
increased, both the mean and total covered PUDOs decreased, as shown in Figure 5b. Since the number
of covered PUDOs represents the extent to which charging demand is served, these values should be as
high as possible.

We conclude that a geographically higher coverage – which naturally happens by adding the grid con-
straint – does not mean a better solution in terms of mobility requirements, as the mean coverage rate
decreases and both mean and total covered PUDOs decrease as well. This means that there is a lower
extent to which CSs are linked to PUDOs and there will be a lower satisfaction of charging demand.

(a) Coverage rate per hexagon and total. (b) Covered PUDO points per hexagon and total.

Figure 5: Effect of adding the grid constraint 6 on (a) coverage rate, and (b) covered PUDO points. Only equipped
hexagons (i.e. hexagons with a non-zero coverage rate) are considered in these box-plots.

4.2 Vary mobility weight and power weight
Figure 6 shows the optimal sizing and siting of CSs for varying mobility and power weights wm and
wp. It is clear that for higher wp, the charging points are located more towards the West of Brussels,
which has the highest solar power density. With increasing wm, the charging points locations shift more
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(a) wm = 0, wp = 1 (b) wm = 0.25, wp = 0.75 (c) wm = 0.5, wp = 0.5

(d) wm = 0.75, wp = 0.25 (e) wm = 1, wp = 0

Figure 6: Optimal solution for charging stations in Brussels with varying weights wm for the mobility objective
function and wp for the power density objective function.

towards the center of Brussels, which has more mobility demand. The effect of this shifting is analysed
based on three variables: coverage rate, covered PUDO points, and solar power density.

By the shift we see in Figure 6, we can conclude that these two types of hexagons do not coincide. This
means that for lower wm and higher wp, CSs are located in hexagons with lower PUDO counts. As a
result, the mean coverage rate will be higher for lower wm and vice versa, since coverage rate is inversely
proportional to PUDO count. This trend can also be noticed in Figure 7a. However, the total coverage
increases for wm going from 0 to 0.75. This follows from the fact that the number of equipped hexagons
for mobility weights 0, 0.25, 0.5, and 0.75 are respectively 266, 279, 327, 402. Finally for wm = 1, the
349 covered hexagons add up to the lowest total coverage rate of all scenario’s. The narrow box in the
box-plot of this scenario shows that the coverage rates of the equipped hexagons are more concentrated
around the lower values. This is because charging points are located in high demand area’s, with high
PUDO counts, where coverage rates are typically lower. Therefore, it is important to also look at the
absolute numbers, depicted In Figure 7b. We observe that the total number of covered PUDO points
increases at every step with wm approaching 1. This is not surprising, as for each increase in wm the
total number of covered PUDO points weights more in the objective function (8), which is maximized.

Finally we analyse the effect of the shift in CS locations on solar power density based on Figure 8. The
mean and total solar density decrease slightly as wm increases from 0 to 0.75. However the difference
is only very small. For wm = 1 (thus wp = 0) there is a significant drop both in mean and total solar
density. From this Figure it is clear that as long that solar power density is considered in the objective
function (wp ̸= 0), the exact value of wp is not too influential on the final mean and total solar density.

From these results, we can conclude that the mobility part of the model locates charging points in area’s
of high PUDO count. This leads to rather low mean and total coverage rates. However, a high total cov-
ered number of PUDO points is reached, indicating a high satisfaction of charging demand. On the other
hand, the power density part tends to densely concentrate the CS locations in the high solar powered
area’s, where PUDO counts are lower. This leads to the highest mean coverage rate and the highest mean
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(a) Coverage rate per hexagon and total.

(b) Covered PUDO points per hexagon and total.

Figure 7: Effect of varying wm and wp on (a) coverage rate, and (b) covered PUDO points. Only equipped
hexagons (i.e. hexagons with a non-zero coverage rate) are considered in these box-plots.

solar power density However, the total coverage stays rather low due to the low number of equipped
hexagons, and the total number of covered PUDOs reaches a minimum.

Therefore it is important to choose wm and wp carefully in order to reach a balance between dispersion,
locations in high PUDO counts area’s, and highly solar powered area’s. In the case study presented in
this paper, a mobility weight of wm = 0.75 would be advisable. Firstly, this weight leads to the highest
total coverage rate. Also, the total number of covered PUDO points that matches with this weight reaches
93% of the highest possible total linked to scenario wm = 1. Finally the mean solar power density for
wm = 0.75 is very close to the optimal value at scenario wm = 0.

5 Conclusion
In this paper a multi-objective optimization model is proposed to locate charging stations for SAEVs
with V2G operations. Mobility requirements, grid restrictions, and solar power density were included in
the model, which was applied to the Brussels road and distribution grid network. First, the addition of the
grid constraint that requires that CSs are located at 400V cabines, was analyzed. The limit of installing
at most two fast-charging points per cabine leads to a higher dispersity of CSs. Although this results in
a higher total coverage, the mean and total number of covered PUDO points decreased. This means that
the satisfaction of charging demand would be lower. In a second part of this study, the optimal sizing
and siting of CSs for varying mobility and power weights have been analyzed. From the moment that the
weight of solar density is 0.25, further increasing the weight only has low impact on the mean and total
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Figure 8: Solar power density for varying wm and wp. Only equipped hexagons (i.e. hexagons with a non-zero
coverage rate) are considered in these box-plots.

solar density. Varying the weights has however a large impact on the coverage of mobility demand. The
results show that the mobility model (the model with mobility weight wm = 1) tends to locate charg-
ing points in high PUDO count areas, while the power density model (the model with mobility weight
wm = 0) concentrates the CS locations too much in highly solar-powered areas, both leading to a low
total coverage rate (due to a low number of covered hexagons for wm = 0, and due to a low mean cover-
age rate for wm = 1). Therefore, it is important to carefully choose the wm and wp (1 − wm) values to
strike a balance between dispersity, locations in high PUDO count areas, and highly solar-powered areas.

This study found that a mobility weight of wm = 0.75 would be advisable, as it leads to the highest total
coverage rate while the total number of covered PUDO points does not deviate much from the highest
total found at scenario wm = 1. Additionally, the mean and total solar power density for wm = 0.75
are close to the optimal values found at scenario wm = 0. Overall, the study highlights the need for
a balanced approach when designing the optimal siting of CSs for SAEVs with V2G in urban areas.
These results can be useful for planners and policymakers to optimize the siting and sizing of CSs for
sustainable and efficient charging infrastructure.

The future research that we are planning to undertake, includes following three aspects. Firstly, we want
to adapt our model in such a way to avoid clustering charging points too densely in area’s with high
PUDO points by imposing a maximal distance between each PUDO point and the nearest CS. Secondly,
to determine the optimal weights for the objective function, a trade-off must be made between the final
mean solar power density and the total covered PUDO points. We want to assign a score to each location
solution in order to formally decide on this trade-off. Finally, in our current model the mobility demand
is only analyzed spatially. In the future, we want to add a temporal component.
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